中国教育在线 中国教育网 加入收藏 设为首页
内容推荐

2019考研数学:线性代数基础阶段复习指导

http://kaoyan.eol.cn  万学海文    2018-01-15    

  2018考研终于拉下帷幕,从今年的命题来看,命题角度新颖,综合性提高,难度上升,很多18的考生反应今年线性代数考难了。所以今年的考题特点和命题趋势会给将要考研的2019的考生以启示。在线性代数的学习上,同学们经常走两个极端,一部分同学感觉线性代数是比较好掌握的,也有一部分同学感觉这部分难度比较大。这跟线性代数的科目特点有关。线性代数课程的特点是系统,前后知识的联系非常紧密,概念性很强,对于抽象性与逻辑性有较高的要求,题型比较固定。那基础阶段应如何复习呢?在基础阶段学习资料我认为只需准备教材和一本带考纲的基础教程,线代教材推荐同济五版《线性代数》或清华大学的,基础教程推荐海文考研的教程或讲义,在接触辅导书之前最好先好好学一遍教材,对内容大致有个了解,必须结合考纲,这样才有针对性。但仅看教材,备考数学还是不够的,所以还必须认真学习专门针对考研的基础教程,基础教程的内容一般包括知识点(和教材相比更有针对性,带总结性),典型例题(和教材相比更贴近考研,综合性更强)和巩固习题。以下从三方面讲一讲基础阶段如何复习好线性代数。

  一、掌握基本概念,建立知识框架。

  1掌握基本概念

  在线代中,定义特别重要,定义往往是掌握原理的出发点的,例如线性相关无关,矩阵的关系中等价,相似,合同等。把这些说法用数学语言严格的表示出来就是定义,然后再分析相互之间有什么联系。考研数学中会出现一些考查说法的选择题,这类题就是专捡那些易混淆部分来考的,命题人可谓是挖空心思,无孔不入,大家可以翻翻历年真题看看就明白了。

  线性代数的概念很多,重要的概念有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

  2弄清联系和区别

  线性代数内容前后联系紧密,相互渗透,各知识点之间有着千丝万缕的联系,因此解题方法灵活多变。记住知识点不是难事,但要把握好知识点的相互联系,非得下一番功夫不可。首先要把握定理和公式成立的条件,一定要注意同时把某一知识点对应的适用条件掌握好!对知识点的掌握最好要掌握原理,而不仅仅是强记,个人觉得这两者是结合起来的吧,能掌握原理的就掌握原理,如果实在不能在短时间内掌握再强记。对于知识点涉及的定理等最好是自己给出证明,例如秩的相关结论的证明,这些证明往往非常简单,几行字就能解决问题,但对加深知识概念理解和基本方法运用非常有用。

  再者要弄清知识点之间的纵横联系,这和高数的学习方法有很大不同,例如:等价、相似、合同之间相互有无关系?比如等价是否一定相似,相似是否一定合同,反过来呢?这些一定要搞清楚,不能一知半解。再如向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关(无关)与齐次线性方程组有非零解(仅有零解)的讨论之间的联系;实对称阵的对角化与实二次型化标准形之间的联系等。另外还有容易混淆的地方,如矩阵的等价和向量组的等价之间的关系,线性相关与线性表示等。掌握它们之间的联系与区别,对大家做线性代数部分的大题也有很大的帮助。

  强烈建议大家在复习过程中自己多总结,既要记得知识点,又要注意把某一知识点对应的适用条件也掌握好,还要把握知识点之间的联系和区别。只有同时把这几方面把握住了,概念这一块才算过关,才算打好了基础。

  3建立知识框架

  基础阶段线代要大概围绕以下内容建立知识框架,即线性方程组,向量,秩,矩阵运算。建立知识框架,类似于围棋中的布局,要想下好棋,大局观非常重要,这在线性代数尤其重要。

  线性代数的学习切入点:线性方程组,线代贯穿的主线就是求方程组的解,换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科,不管是向量的线性相关,线性表示,还是求特征向量,都是围绕线性方程组。关于线性方程组的解,有三个问题值得讨论:(1)方程组是否有解,即解的存在性问题;(2)方程组如何求解,有多少个解;(3)方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。

  线性方程组求解主要是高斯消元法,在利用求解的过程中涉及到一种重要的运算,即把某一行的倍数加到另一行上,也就是说,为了研究从线性方程组的系数和常数项判断它有没有解,有多少解的问题,需要定义这样的运算,这提示我们可以把问题转为直接研究这种对n元有序数组的数量乘法和加法运算,即向量。例如大家可以通过一些简单例子体会线性相关和线性无关(零向量一定线性无关、单个非零向量线性无关、单位向量组线性无关等等)。也可以从多个角度(线性组合角度、线性表出角度、齐次线性方程组角度)体会线性相关和线性无关的本质。这部分内容概念多,定理性质也多,光凭记忆是很难掌握的。

  秩是一个非常深刻而重要的概念,就可以判断向量组是线性相关还是线性无关,有了秩的概念以后,我们可以把线性相关的向量组用它的极大线性无关组来替换掉,从而得到线性方程组有解的充分必要条件:若系数矩阵的列向量组的秩和增广矩阵的列向量组的秩相等,则有解,若不等,则无解。秩的灵活运用,充分体现了线性代数中推理和抽象性强的特点,同学们在做题时要好好体会,因此有必要进一步好好研究向量组的秩的计算方法。

  在研究线性方程组的解的过程当中,同学们注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门研究,建立这方面的知识框架。

备战2019年考研 你需要做这些!
考研全程规划 专业院校精准定位 考研复习计划 考研选校

推荐阅读

考研工具箱考生须知的时间轴 考研备考月历 考研之旅全程定制 考研百科"助跑"
考研招生简章 推荐免试申请攻略 专科考研宝典 专业硕士报考指南跨专业考研指南
考研专业目录 13大学科门类解读 热门专业解析 学硕专业 专硕专业 最受文科生青睐
考研选校:院校库 211 985 34所自划线 研究生院名单 教育部直属高校 “双一流”名单

掌上考研

中国教育在线考研订阅号

研究生留学qq群:437946603

免责声明:

① 凡本站注明“稿件来源:中国教育在线”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:中国教育在线”,违者本站将依法追究责任。

② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。

  
  
  
国家线:  自划线:
  招生专业:   所在院校:

 各地热招:      更多>>

记录教育点滴  查往期图解>>图研考研

推荐阅读

专业人气榜

  排名 专业名称       人气   开设院校

高校人气榜

  排名 学校名称      人气   相关推荐
eol.cn简介 | 联系方式 | 网站声明 | 招聘信息 | 京ICP证140769号 | 京ICP备12045350号 | 京网文[2017]10376-1180号 | 京公网安备 11010802020236号
版权所有 赛尔互联(北京)教育科技有限公司 CERNET Corporation
Mail to: webmaster@cernet.com