考试科目:高等数学、线性代数
考试形式和试卷结构
一、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
二、答题方式
答题方式为闭卷、笔试.
三、试卷内容结构
高等教学 约80%
线性代数 约20%
四、试卷题型结构
单项选择题 10小题,每小题5分,共50分
填空题 6小题,每小题5分,共30分
解答题(包括证明题) 7小题,共70分
高等数学
一、函数、极限、连续
函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性、复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数函数关系的建立.
数列极限与函数极限的定义及其性质、函数的左极限与右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算、极限存在的两个准则:单调有界准则和夹逼准则、两个重要极限:
函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质.
考试要求
1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念、了解反函数及隐函数的概念、掌握基本初等函数的性质及其图形、了解初等函数的概念、理解极限的概念、理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.
4.掌握极限的性质及四则运算法则.
5.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
6.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
7.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
8.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
二、一元函数微分学
导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、高阶导数、一阶微分形式的不变性、微分中值定理洛必达法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘、函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径.
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间(a.b)内,设函数(x)具有二阶导数当f"(x)>0 时,f(x)的图形是凹的;当f"(X)<0时,f(X)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.
三、一元函数积分学
原函数和不定积分的概念、不定积分的基本性质、基本积分公:式、定积分的概念和基本性质、定积分中值定理、积分上限的函数及其导数、牛顿-菜布尼茨(Newton-Leibniz)公式、不定积分和定积分的换元积分法与分部积分法、有理函数、三角函数的有理式和简单无理函数的积分、反常(广义)积分、定积分的应用.
考试要求
1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式和简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿一菜布尼茨公式.
5.了解反常积分的概念,会计算反常积分.
6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.
四、多元函数微积分学
多元函数的概念、二元函数的几何意义、二元函数的极限与连续的概念、有界闭区域.上二元连续函数的性质、多元函数的偏导数和全微分、多元复合函数、隐函数的求导法、二阶偏导数、多元函数的极值和条件极值、最大值和最小值、二重积分的概念、基本性质和计算.
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小.值,并会解决一些简单的应用问题.
5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).
五、常微分方程
常微分方程的基本概念、变量可分离的微分、齐次微分方程、一阶线性微分方程、可降阶的高阶微分方程、线性微分方程解的性质及解的结构定理、二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程、简单的二阶常系数非齐次线性微分方程、微分方程的简单应用.
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程及一-阶线性微分方程的解法,会解齐次微分方程.
3.会用降阶法解下列形式的微分方程: y"=f(x)、y"= f(x,y')和y"=f(y,y').
4.理解二阶线性微分方程解的性质及解的结构定理.
5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
7.会用微分方程解决一些简单的应用问题.
线性代数
一、行列式
行列式的概念和基本性质、行列式按行(列)展开定理.
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
矩阵的概念、矩阵的线性运算、矩阵的乘法、方阵的幂、方阵乘积的行列式、矩阵的转置、逆矩阵的概念和性质、矩阵可逆的充分必.要条件、伴随矩阵、矩阵的初等变换、初等矩阵、矩阵的秩、矩阵的等价、分块矩阵及其运算.
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.
5.了解分块矩阵及其运算.
三、向量
向量的概念、向量的线性组合和线性表示、向量组的线性相关与线性无关、向量组的极大线性无关组、等价向量组、向量组的秩、向.量组的秩与矩阵的秩之间的关系、向量的内积、线性无关向量组的的正交规范化方法.
考试要求
1.理解n维向量、向量的线性组合与线性表示的概念.
2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.
4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.
5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
四、线性方程组
线性方程组的克拉默(Cramer)法则、齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件、线性方程组解的性质和解的结构、齐次线性方程组的基础解系和通解、非齐次线性方程组的通解.
考试要求
1.会用克拉默法则.
2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.
3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.
4.理解非齐次线性方程组的解的结构及通解的概念.
5.会用初等行变换求解线性方程组.
五、矩阵的特征值及特征向量
矩阵的特征值和特征向量的概念,性质、相似矩阵的概念及性质、矩阵可相似对角化的充分必要条件、相似对角矩阵、实对称矩阵的特征值、特征向量及其相似对角矩阵.
考试要求
1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.
2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.
3.理解实对称矩阵的特征值和特征向量的性质.
六、二次型
二次型及其矩阵表示、合同变换与合同矩阵、二次型的秩、惯性定理、二次型的标准形和规范形、用正交变换和配方法化二次型为标准形、二次型及其矩阵的正定性.
考试要求
1.了解二次型的概念, 会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形。
3.理解正定二次型、正定矩阵的概念,并掌握其判别法.
① 凡本站注明“稿件来源:中国教育在线”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:中国教育在线”,违者本站将依法追究责任。
② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。
- 宾阳县职业技术学校
- 贵港市民族职业技术学校
- 容县职业中等专业学校
- 贵阳经济技术学校
- 黔西市中等职业学校
- 哈尔滨市现代服务中等职业技术学校
- 哈尔滨市航空服务中等专业学校
- 哈尔滨市龙江旅游中等职业技术学校
- 黑龙江医药卫生学校
- 黑龙江省林业卫生学校
- 南昌工业工程学校
- 南昌市第一中等专业学校
- 信丰中等专业学校
- 井冈山市旅游中等专业学校
- 沈阳现代制造服务学校
- 沈阳市信息工程学校
- 沈阳市旅游学校
- 陕西省商业学校
- 西安交通职业学校
- 韩城市职业中等专业学校
- 四川省乐山市竹根职业中专学校
- 乐山市计算机学校
- 重庆市经贸中等专业学校
- 重庆市渝中职业教育中心
- 重庆市旅游学校
- 重庆市立信职业教育中心
- 重庆市九龙坡职业教育中心
- 重庆市育才职业教育中心
- 重庆市涪陵区职业教育中心
- 重庆市黔江区民族职业教育中心
- 重庆市大足职业教育中心
- 重庆市轻工业学校
- 四川仪表工业学校
- 重庆市江南职业学校
- 重庆市医药学校
- 重庆财政学校
- 重庆市梁平职业技术学校
- 重庆市涪陵信息技术学校
- 沈阳市汽车工程学校
- 重庆中意职业技术学校
- 重庆万州商贸中等专业学校
- 重庆市涪陵创新计算机学校
- 重庆铁路运输技师学院
- 重庆市武隆区职业教育中心
- 新安县职业高级中学
- 黑龙江省贸易经济学校
- 江西省医药学校
- 江西省信息科技学校
- 江西省化学工业学校
- 江西省民政学校
- 九江庐山西海艺术学校
- 赣州应用技术职业学校
- 南康区电子工业技术学校
- 赣州旅游职业学校
- 吉安应用工程学校
- 吉安市特殊教育学校
- 上饶市信州理工学校
- 西安现代职业高中
- 广州市信息技术职业学校
- 广州市旅游商务职业学校
- 广州市幼儿师范学校
- 广州市交通运输职业学校
- 广州市财经商贸职业学校
- 广州市轻工职业学校
- 广州市纺织服装职业学校
- 广州市侨光财经职业技术学校
- 广州市黄埔职业技术学校
- 广州市番禺区职业技术学校
- 广州市花都区理工职业技术学校
- 广州市增城区职业技术学校
- 广州市增城区卫生职业技术学校
- 广州市增城区东方职业技术学校
- 广州市南沙区岭东职业技术学校
- 珠海市新思维中等职业学校
- 广州市贸易职业高级中学
- 广州市海珠工艺美术职业学校
- 广州市从化区职业技术学校
- 重庆市开州区巨龙中等职业技术学校
- 重庆市梁平职业教育中心
- 重庆市永川职业教育中心
- 重庆市龙门浩职业中学校
- 重庆市女子职业高级中学
- 重庆工商学校
- 新余市中等专业学校
- 会昌中等专业学校
- 南康中等专业学校
- 上犹中等专业学校
- 龙南中等专业学校
- 上高中等专业学校
- 永新中等专业学校
- 东乡机电中等专业学校
- 嫩江市职业技术教育中心学校
- 沈阳市艺术幼儿师范学校
- 瑞金中等专业学校
- 丰城中等专业学校
- 德兴市职业中专学校
- 重庆市护士学校
- 重庆市体育运动学校
- 重庆市渝东卫生学校
- 贵州省交通运输学校
- 南昌汽车机电学校
- 佛山市顺德区中等专业学校
- 重庆市三峡水利电力学校
- 重庆市农业学校
- 重庆艺术学校
- 德安县中等职业技术学校
- 分宜县职业技术学校
- 江西省冶金工业学校
- 石城县职业技术学校
- 黎川县职业中等专业学校
- 黔西市水西中等职业学校
- 南昌铁路保安中等专业学校
- 江西泛美艺术中等专业学校
- 重庆市南丁卫生职业学校
- 重庆市万州电子信息工程学校
- 南昌向远轨道技术学校
- 赣北电子工业学校
- 广州市城市建设职业学校
- 樟树市职业技术学校
- 佛山市顺德区北滘职业技术学校
- 佛山市顺德区陈登职业技术学校
- 广州市荔湾外语职业高级中学
- 江西省交通运输学校
- 江西省建设工程学校
- 江西省通用技术工程学校
- 江西省轻工业科技中等专业学校
- 重庆市万州现代信息工程学校
- 重庆市巫山县职业教育中心
- 重庆市云阳职业教育中心
- 重庆市奉节职业教育中心
- 重庆市丰都县职业教育中心
- 重庆市巫溪县职业教育中心
- 重庆市北碚职业教育中心
- 重庆市商务学校
- 重庆市开州区职业教育中心
- 重庆市垫江县职业教育中心
- 重庆市工艺美术学校
- 重庆市垫江县第一职业中学校
- 秀山土家族苗族自治县职业教育中心
- 重庆工业管理职业学校
- 重庆市两江职业教育中心
- 重庆市万盛职业教育中心
- 重庆市潼南职业教育中心
- 重庆光华女子职业中等专业学校
- 重庆市铜梁职业教育中心
- 重庆市璧山职业教育中心
- 重庆市涪陵第一职业中学校
- 重庆市城口县职业教育中心
- 重庆市酉阳职业教育中心
- 彭水苗族土家族自治县职业教育中心
- 重庆市綦江职业教育中心
- 重庆市忠县职业教育中心
- 共青城市高科中等职业技术学校
- 九江市柴桑区中等职业技术学校
- 大余县职业中等专业学校
- 余干县英才职业学校
- 江西省遂川县职业中学
- 抚州信息工程学校
- 赣州市军科职业技术学校
- 上饶市信赖工艺美术学校
- 赣州现代科技职业学校
- 贵阳职业技术学院
- 密山市职业技术教育中心学校
- 黑龙江旅游职业技术学院
- 黑龙江林业职业技术学院
- 广州市电子商务技工学校
- 都江堰市职业中学
- 红河州特殊教育学校
- 黑龙江省伊春卫生学校
- 陕西省泾阳职业中等专业学校
- 重庆市交通高级技工学校
- 重庆交通运输高级技工学校
- 重庆市工业技师学院
- 重庆市聚英技工学校
- 重庆市城市建设高级技工学校
- 重庆能源工业技师学院
- 共青技工学校
- 江西文理技师学院
- 大庆技师学院
- 南昌华中技工学校
- 共青铁路工程技工学校
- 于都新长征技工学校
- 南昌当代艺术学校
- 重庆市万州职业教育中心
- 江西上饶东南智慧技工学校
- 江西省石油技工学校
- 宜春市技术工人学校
- 江西新余南铁技工学校
- 广州城建技工学校
- 重庆市艺才高级技工学校
- 上饶信工技工学校