中国教育在线讯 考研冲刺阶段,把真题吃透,通过对历年真题题型、机构、安排,可以熟悉各位出题老师的出题意向、重点,融汇贯通对于后期大幅提高复习效果明显。数学教研室张老师结合近六年真题,为同学们总结了线性代数各章节易考点,可以帮助大家在复习中查漏补缺。
第一章行列式,这一块唯一的重点是行列式的计算,主要有数值型和抽象型两类行列式的计算,06、08、10、12年的真题中均有抽象行列式的计算问题,而且均是以填空题的形式出现的,个别的还出现在了大题的第一问中。
第二章矩阵,重点在矩阵的秩、逆、伴随、初等变换以及初等矩阵、分块矩阵。这一章概念和运算较多,考点也较多,而且考点以填空和选择为主,当然也会结合其他章节的知识考大题。06、09、11、12年均考了一个小题是有关初等变换与矩阵乘法之间的关系,10年考了一个小题关于矩阵的秩,08年考了一道抽象矩阵求逆的问题。
第三章向量,可以分为三个重点,第一个是向量组的线性表示,第二个是向量组的线性相关性,第三个是向量组的秩及极大线性无关组。这一章无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是向量组的线性表示就是向量组的线性相关性的判断,10年还考了一道向量组秩的问题。
第四章线性方程组,有三个重点。第一个是线性方程组解的判定问题,第二个是解的性质问题,第三个是解的结构问题。06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题。
第五章矩阵的特征值与特征向量,也是分三个重点。第一个是特征值与特征向量的定义、性质以及求法。第二个为矩阵的相似对角化问题,第三是实对称矩阵的性质以及正交相似对角化的问题。实对称矩阵的性质与正交相似对角化问题可以说每年必考,12年、11年、10年09年都考了。
第六章二次型有两个重点。第一个是化二次型为标准形,同学们必须掌握两种方法,第一个是配方法,第二个是正交变换法。第二个重点是正定二次型的判定。11年考的一个小题,用通过正交变换法将二次型化为标准形,12年、11年、10年均以大题的形式出现,但主要用的是正交变换化二次型为标准形。
① 凡本站注明“稿件来源:中国教育在线”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:中国教育在线”,违者本站将依法追究责任。
② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。