线性代数主要内容就是求解多元线性方程组,其中行列式的计算起重要作用。而学习行列式的过程中,对行列式的计算技巧往往较难掌握。在本文里,介绍了两个技巧性较强的方法:化三角形法和逐行(列)相加法。
一、化三角形法
化三角形法是先利用行列式的性质将原行列式作某种保值变形,化为上(下)三角形行列式,再利用上(下)三角形行列式的特点(主对角线上元素的乘积)求出值。
二、逐行(列)相减法
有这样一类行列式,每相邻两行(列)之间有许多元素相同,且这些相同元素都集中在某个角上。因此可以逐行(列)相减的方法化出许多零元素来。
上式还不是特殊三角形,但每相邻两行之间有许多相同元素(1或0) ,且最后一行有(n-1)元素都是x 。因此可再用两列逐列相减的方法:第(n-1) 列起,每一列的 (-1)倍加到后一列上
小结:对于本题所作第一次变换--逐行相减--的结果,第二次是作了逐列相减的变换。这样得出的行列式,再按第一列展开后,成了两个(n-1)阶的特殊行列式,体会其中的区别,并分析为何第二次作逐列相减更好一些。
在具体计算时,要根据行列式构造上的特点,利用行列式的性质,选用适当的方法来计算。这就需要我们熟悉个类型行列式的构造上的特点及善于不断的归纳总结。
① 凡本站注明“稿件来源:中国教育在线”的所有文字、图片和音视频稿件,版权均属本网所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本站协议授权的媒体、网站,在下载使用时必须注明“稿件来源:中国教育在线”,违者本站将依法追究责任。
② 本站注明稿件来源为其他媒体的文/图等稿件均为转载稿,本站转载出于非商业性的教育和科研之目的,并不意味着赞同其观点或证实其内容的真实性。如转载稿涉及版权等问题,请作者在两周内速来电或来函联系。

